144 research outputs found

    How binding of small molecule and peptide ligands to HIV-1 TAR alters the RNA motional landscape

    Get PDF
    The HIV-1 TAR RNA represents a well-known paradigm to study the role of dynamics and conformational change in RNA function. This regulatory RNA changes conformation in response to binding of Tat protein and of a variety of peptidic and small molecule ligands, indicating that its conformational flexibility and intrinsic dynamics play important roles in molecular recognition. We have used 13C NMR relaxation experiments to examine changes in the motional landscape of HIV-1 TAR in the presence of three ligands of different affinity and specificity. The ligands are argininamide, a linear peptide mimic of the Tat basic domain and a cyclic peptide that potently inhibits Tat-dependent activation of transcription. All three molecules induce the same motional characteristics within the three nucleotides bulge that represents the Tat-binding site. However, the cyclic peptide has a unique motional signature in the apical loop, which represents a binding site for the essential host co-factor cyclin T1. These results suggest that all peptidic mimics of Tat induce the same dynamics in TAR within this protein binding site. However, the new cyclic peptide mimic of Tat represents a new class of ligands with a unique effect on the dynamics and the structure of the apical loop

    Visualizing spatially correlated dynamics that directs RNA conformational transitions

    Full text link
    RNAs fold into three- dimensional ( 3D) structures that subsequently undergo large, functionally important, conformational transitions in response to a variety of cellular signals(1-3). RNA structures are believed to encode spatially tuned flexibility that can direct transitions along specific conformational pathways(4,5). However, this hypothesis has proved difficult to examine directly because atomic movements in complex biomolecules cannot be visualized in 3D by using current experimental methods. Here we report the successful implementation of a strategy using NMR that has allowed us to visualize, with complete 3D rotational sensitivity, the dynamics between two RNA helices that are linked by a functionally important trinucleotide bulge over timescales extending up to milliseconds. The key to our approach is to anchor NMR frames of reference onto each helix and thereby directly measure their dynamics, one relative to the other, using 'relativistic' sets of residual dipolar couplings ( RDCs)(6,7). Using this approach, we uncovered super- large amplitude helix motions that trace out a surprisingly structured and spatially correlated 3D dynamic trajectory. The two helices twist around their individual axes by approximately 536 and 1106 in a highly correlated manner ( R = 0.97) while simultaneously ( R = 0.81 - 0.92) bending by about 94 degrees. Remarkably, the 3D dynamic trajectory is dotted at various positions by seven distinct ligand- bound conformations of the RNA. Thus even partly unstructured RNAs can undergo structured dynamics that directs ligand- induced transitions along specific predefined conformational pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62506/1/nature06389.pd

    Free energy estimation of short DNA duplex hybridizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimation of DNA duplex hybridization free energy is widely used for predicting cross-hybridizations in DNA computing and microarray experiments. A number of software programs based on different methods and parametrizations are available for the theoretical estimation of duplex free energies. However, significant differences in free energy values are sometimes observed among estimations obtained with various methods, thus being difficult to decide what value is the accurate one.</p> <p>Results</p> <p>We present in this study a quantitative comparison of the similarities and differences among four published DNA/DNA duplex free energy calculation methods and an extended Nearest-Neighbour Model for perfect matches based on triplet interactions. The comparison was performed on a benchmark data set with 695 pairs of short oligos that we collected and manually curated from 29 publications. Sequence lengths range from 4 to 30 nucleotides and span a large GC-content percentage range. For perfect matches, we propose an extension of the Nearest-Neighbour Model that matches or exceeds the performance of the existing ones, both in terms of correlations and root mean squared errors. The proposed model was trained on experimental data with temperature, sodium and sequence concentration characteristics that span a wide range of values, thus conferring the model a higher power of generalization when used for free energy estimations of DNA duplexes under non-standard experimental conditions.</p> <p>Conclusions</p> <p>Based on our preliminary results, we conclude that no statistically significant differences exist among free energy approximations obtained with 4 publicly available and widely used programs, when benchmarked against a collection of 695 pairs of short oligos collected and curated by the authors of this work based on 29 publications. The extended Nearest-Neighbour Model based on triplet interactions presented in this work is capable of performing accurate estimations of free energies for perfect match duplexes under both standard and non-standard experimental conditions and may serve as a baseline for further developments in this area of research.</p

    Towards a target label-free suboptimum oligonucleotide displacement-based detection system

    Get PDF
    A novel method for the future development of label-free DNA sensors is proposed here. The approach is based on the displacement of a labelled suboptimum mutated oligonucleotide hybridised with the immobilised biotin-capture probe. The target fully complementary to the biotin-capture probe can displace the labelled oligonucleotide causing a subsequent decrease of the signal that verifies the presence of the target. The decrease of signal was demonstrated to be proportional to the target concentration. A study of the hybridisation of mutated and complementary labelled oligonucleotides with an immobilised biotin-capture probe was carried out. Different kinetic and thermodynamic behaviour was observed for heterogeneous hybridisation of biotin-capture probe with complementary or suboptimum oligonucleotides. The displacement method evaluated colourimetrically achieved the objective of decreasing the response time from 1 h for direct hybridisation of 19-mer oligonucleotides in the direct enzyme-linked oligonucleotide assay (ELONA) to 5 min in the case of displacement detection in the micromolar concentration range

    Insecticide susceptibility status of Phlebotomus (Paraphlebotomus) sergenti and Phlebotomus (Phlebotomus) papatasi in endemic foci of cutaneous leishmaniasis in Morocco

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Morocco, cutaneous leishmaniasis is transmitted by <it>Phlebotomus sergenti </it>and <it>Ph. papatasi</it>. Vector control is mainly based on environmental management but indoor residual spraying with synthetic pyrethroids is applied in many foci of <it>Leishmania tropica</it>. However, the levels and distribution of sandfly susceptibility to insecticides currently used has not been studied yet. Hence, this study was undertaken to establish the susceptibility status of <it>Ph. sergenti </it>and <it>Ph. papatasi </it>to lambdacyhalothrin, DDT and malathion.</p> <p>Methods</p> <p>The insecticide susceptibility status of <it>Ph. sergenti </it>and <it>Ph. papatasi </it>was assessed during 2011, following the standard WHO technique based on discriminating dosage. A series of twenty-five susceptibility tests were carried out on wild populations of <it>Ph. sergenti </it>and <it>Ph. papatasi </it>collected by CDC light traps from seven villages in six different provinces. Knockdown rates (KDT) were noted at 5 min intervals during the exposure to DDT and to lambdacyhalothrin. After one hour of exposure, sandflies were transferred to the observation tubes for 24 hours. After this period, mortality rate was calculated. Data were analyzed by Probit analysis program to determine the knockdown time 50% and 90% (KDT50 and KDT90) values.</p> <p>Results</p> <p>Study results showed that <it>Ph.sergenti </it>and <it>Ph. papatasi </it>were susceptible to all insecticides tested. Comparison of KDT values showed a clear difference between the insecticide knockdown effect in studied villages. This effect was lower in areas subject to high selective public health insecticide pressure in the framework of malaria or leishmaniasis control.</p> <p>Conclusion</p> <p><it>Phlebotomus sergenti </it>and <it>Ph. papatasi </it>are susceptible to the insecticides tested in the seven studied villages but they showed a low knockdown effect in Azilal, Chichaoua and Settat. Therefore, a study of insecticide susceptibility of these vectors in other foci of leishmaniasis is recommended and the level of their susceptibility should be regularly monitored.</p

    The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs

    Get PDF
    Replication of human immunodeficiency virus (HIV) requires base pairing of the reverse transcriptase primer, human tRNALys3, to the viral RNA. Although the major complementary base pairing occurs between the HIV primer binding sequence (PBS) and the tRNA's 3′-terminus, an important discriminatory, secondary contact occurs between the viral A-rich Loop I, 5′-adjacent to the PBS, and the modified, U-rich anticodon domain of tRNALys3. The importance of individual and combined anticodon modifications to the tRNA/HIV-1 Loop I RNA's interaction was determined. The thermal stabilities of variously modified tRNA anticodon region sequences bound to the Loop I of viral sub(sero)types G and B were analyzed and the structure of one duplex containing two modified nucleosides was determined using NMR spectroscopy and restrained molecular dynamics. The modifications 2-thiouridine, s2U34, and pseudouridine, Ψ39, appreciably stabilized the interaction of the anticodon region with the viral subtype G and B RNAs. The structure of the duplex results in two coaxially stacked A-form RNA stems separated by two mismatched base pairs, U162•Ψ39 and G163•A38, that maintained a reasonable A-form helix diameter. The tRNA's s2U34 stabilized the interaction between the A-rich HIV Loop I sequence and the U-rich anticodon, whereas the tRNA's Ψ39 stabilized the adjacent mismatched pairs

    RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

    Get PDF
    With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field

    Theoretical Analysis of the Stress Induced B-Z Transition in Superhelical DNA

    Get PDF
    We present a method to calculate the propensities of regions within a DNA molecule to transition from B-form to Z-form under negative superhelical stresses. We use statistical mechanics to analyze the competition that occurs among all susceptible Z-forming regions at thermodynamic equilibrium in a superhelically stressed DNA of specified sequence. This method, which we call SIBZ, is similar to the SIDD algorithm that was previously developed to analyze superhelical duplex destabilization. A state of the system is determined by assigning to each base pair either the B- or the Z-conformation, accounting for the dinucleotide repeat unit of Z-DNA. The free energy of a state is comprised of the nucleation energy, the sequence-dependent B-Z transition energy, and the energy associated with the residual superhelicity remaining after the change of twist due to transition. Using this information, SIBZ calculates the equilibrium B-Z transition probability of each base pair in the sequence. This can be done at any physiologically reasonable level of negative superhelicity. We use SIBZ to analyze a variety of representative genomic DNA sequences. We show that the dominant Z-DNA forming regions in a sequence can compete in highly complex ways as the superhelicity level changes. Despite having no tunable parameters, the predictions of SIBZ agree precisely with experimental results, both for the onset of transition in plasmids containing introduced Z-forming sequences and for the locations of Z-forming regions in genomic sequences. We calculate the transition profiles of 5 kb regions taken from each of 12,841 mouse genes and centered on the transcription start site (TSS). We find a substantial increase in the frequency of Z-forming regions immediately upstream from the TSS. The approach developed here has the potential to illuminate the occurrence of Z-form regions in vivo, and the possible roles this transition may play in biological processes

    Synthesis of Janus compounds for the recognition of G-U mismatched nucleobase pairs

    Get PDF
    The design and synthesis of two Janus-type heterocycles with the capacity to simultaneously recognize guanine and uracyl in G-U mismatched pairs through complementary hydrogen bond pairing is described. Both compounds were conveniently functionalized with a carboxylic function and efficiently attached to a tripeptide sequence by using solid-phase methodologies. Ligands based on the derivatization of such Janus compounds with a small aminoglycoside, neamine, and its guanidinylated analogue have been synthesized, and their interaction with Tau RNA has been investigated by using several biophysical techniques, including UV-monitored melting curves, fluorescence titration experiments, and 1H NMR. The overall results indicated that Janus-neamine/guanidinoneamine showed some preference for the +3 mutated RNA sequence associated with the development of some tauopathies, although preliminary NMR studies have not confirmed binding to G-U pairs. Moreover, a good correlation has been found between the RNA binding affinity of such Janus-containing ligands and their ability to stabilize this secondary structure upon complexation
    corecore